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Structural MRI (sMRI) is an imaging modality used to study characteristic patterns of brain 
tissue atrophy resulting from cumulative loss and shrinkage of the neuropil. As an indicator of 
neuronal injury resulting from different causes, it is not necessarily AD-specific[1]. sMRI has 
been used to investigate AD patterns of tissue atrophy by employing voxel-based morphometry 
(VBM), tensor-based morphometry[2, 3] and region of interest (ROI) analyses, often based on 
hippocampal volume[4].  VBM was developed as an alternative to ROI analyses because it can 
capture complex patterns across ROIs that will be missed by standard ROI methods. Voxel-
based methods use segmentations of gray matter (GM) and/or white matter tissue and/or 
cerebrospinal fluid (CSF) at the voxel level.[5, 6] These types of approaches are in essence 
univariate and based on traditional statistics; they do not allow for individual-level predictions, 
which would be desirable from a clinical perspective.  
 
Machine learning methods can address the challenges posed by the high dimensionality of 
neuroimaging data and other sources of information that must be integrated to produce 
accurate prediction models. Machine learning is a branch of artificial intelligence that deals 
with development of algorithms to make intelligent data-based decisions or uncover complex 
patterns hidden in data. They are multivariate and often non-linear, which expands the 
potential to capture complex functional relationships within datasets. Machine learning 
methods that operate directly at the voxel level should have an advantage over ROI- based 
approaches, since they can capture complex spatial patterns of atrophy that extend across 
ROIs. Although several research groups[7-9] (including ours) have used machine learning to 
derive whole brain biomarkers of AD-related neurodegeneration only a very few have been 
validated and are well documented. For example, the SPARE-AD index has been tested for 
associations with plasma analytes[10], prediction of incident impairment[11] and replicated in a 
second database[12, 13]. 
 
We have developed the AD Pattern Similarity (AD-PS) Scores, first applied to the Alzheimer’s 
Disease Neuroimaging Initiative cohort and more recently to the Women Health Initiative 
Memory (WHIMS) MRI study[14, 15]. Our approach is based on an elastic net regularized 
classifier. The sparsity property of the elastic net algorithm means that the coefficients of 
voxels in the model irrelevant to prediction are forced to be zero, which is equivalent to an 
embedded variable selection mechanism. Because of the sparsity constraints, the algorithm can 
determine by itself, based on the imaging data, the brain areas relevant for prediction of AD. 
The AD-PS scores have shown strong associations with incident cognitive impairment and cross-
sectional and longitudinal associations with age, cognitive function, cognitive status and white 
matter small vessel ischemic disease volume[15]. In addition, a recent report from our group 
[16] found the AD-PS scores to be associated with trajectories of cognitive function in WHIMS-
MRI. Women were grouped into five clusters of trajectories using a latent class approach[17]. 
AD-PS scores varied significantly among clusters of trajectories with relationships that were 
more consistent and stronger than those for other traditional risk factors (education, diabetes, 
and APOE-ε4 genotype).  
 
Other approaches have focused on combinations of regions of the brain known to be 
vulnerable to AD apriori.  For example, other ARIC researchers used an AD-signature MRI 



biomarker based on volumes of several brain areas (e.g. Hippocampus, entorhinal, 
parahippocampal, precuneus, cuneus and inferior parietal lobule) known to be related to 
AD[18, 19].   
 
The relative predictive value of different measures developed using machine learning or based 
on human expertise is unclear. We will estimate the AD-PS scores for visits 5 MRI scans and 
take advantage of the availability of the AD-signature in ARIC to compare their relative merit 
when predicting cognitive status an incident cognitive impairment. In addition, we will take 
advantage of the availability of amyloid PET in ARIC to investigate associations of the MRI 
measures with amyloid burden in a subset of ARIC participants[20]. 
 
5. Main Hypothesis/Study Questions: 
 
Our main goal is estimating the AD-PS scores for the ARIC MRI cohort and investigate 
associations with cognitive status, incident cognitive impairment and amyloid burden. In 
addition, we will compare their relative merit with respect to the AD-signature biomarker when 
predicting cognitive status and incidence of MCI and AD in the ARIC MRI cohort.  Our main 
hypotheses are: 
 
Hypothesis 1: The AD-PS scores estimated at visit 5 will be associated with cognitive status at 
visit 5 for all participants with MRI. (Cross-sectional, n=1971) 
 
Hypothesis 2: The AD-PS scores estimated at visit 5 will be associated with PET amyloid global 
cortical standardized uptake value ratios. (Cross-sectional, n=329) 
 
Hypothesis 3: The AD-PS scores estimated at visit 5 will be predictive of incident cognitive 
impairment at visits 6 and 7 for those participants with MRI and adjudicated as cognitively 
normal at visit 5. (Longitudinal) 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, and 
any anticipated methodologic limitations or challenges if present). 
 
Design: Cross-sectional design for neuroimaging and baseline cognition and a longitudinal study 
design for cognitive changes over follow-up through visit 7.  
 
Outcome sets: 
 
Visits 5-7 
Demographic data 
Cognitive data   
Adjudication of cognitive status 
APOE Ɛ4 carrier status 
 



Datasets: 
 
Visits 5: 
 
T1 MRI raw images for all individuals 
Lesion burden information: White matter hyperintensities, infarcts, microhemorrages, etc. 
Amyloid PET - ROI SURVs 
AD-signature volumes 
Hippocampal volumes 
Intracranial volumes 
 
Estimation of the AD-PS scores 
 
T1 MRI images available in ADNI and ARIC will be processed using a pipeline based on Advanced 
Normalization Tools (ANTs)[21, 22] that we have developed[15]. We can use a cluster of over 
1500 CPUs using the Slurm scheduler. ANTs’ capabilities include diffeomorphic transformations 
for image warping that preserve topology. These are based on symmetric normalization 
algorithms which have been top-performing image warping approaches in large comparative 
studies[23, 24]. As a result of the processing, segmented images representing different tissues 
will be warped into a common template. In this case, the common template for both studies 
will be generated using images from ADNI-2 CN participants. The rest of the ADNI and ARIC MRI 
images will be warped directly to the ADNI template. Technical details about ANTs processing 
and our Slurm pipeline can be found elsewhere[21, 25]  
 

Once ADNI and ARIC MRI images are aligned into a template, we will use high-dimensional 
machine learning methods to estimate AD-PS scores in the ARIC cohort as described in [15]. 
Further details of the machine learning algorithms were published previously[26, 27]. Briefly, an 
elastic net regularized logistic regression (EN-RLR) classifier was estimated using the GM 
probability maps from CN and AD participants in ADNI; in other words, ADNI is used as training 
dataset. AD-PS scores are the class-conditional probability of membership to the AD group. These 
are computed as the median values of 5 repetitions of the computations, to account for variability 
due to random partitioning of cross-validation that occurred during model estimation[26]. The 
AD-PS scores for ARIC participants are estimated by providing their corresponding visit 5 GM 
probability maps to the ADNI-based classifiers.  
 
Analyses: 
 

1) Logistic regressions, linear regressions, and Cox proportional hazards regressions will be 
used to investigate the scores associations with cross-sectional cognitive status and 
amyloid burden, and incidence of cognitive impairment, respectively. These analyses 
will be adjusted by age, race, sex, education and intracranial volume. 

2) The impact of MRI measures of lesion burden (e.g. white matter hyperintensities, 
microhemorrages, infarcts, etc.) on these associations (MRI scores with cognitive status, 
incident cognitive impairment and amyloid burden) will be evaluated. 



 
Comparisons: 
 
The AD-PS and AD-signature scores will be standardized.  They will be treated as independent 
variables and fitted in linear, logistic and Cox proportional hazards regression models one at a 
time.  Age, sex, race, education, and intracranial volume will be adjusted in the models.  
Standardized regression coefficients and p-values will be calculated and compared. For logistic 
regressions, the area under curve (AUC) statistics will be estimated.  The statistical differences 
in AUC statistics across models will be tested using the nonparametric method as well.[28] 
[28] 
 
Exploratory analyses will be performed using stratifications by race, sex and APOE Ɛ4 carrier 
status 
 
Limitations/Challenges 
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